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Abstract 

In this paper, firstly the classification of filters is discussed. 
Topological space  plays a crucial role in this discussion. After that the 
relations between them are studied. Especially, the characterizations of 
ultrafilters are presented with detail proofs. Ultrafilter is a powerful tool 
both in set theory and in topology. Moreover, the comparisons of filters are 
expressed and some notions of filter basis and trace of filter are described. 
Finally, ultrafilter convergence theorem and convergence of Cauchy filter in 
topological vector space are investigated. 

 
1.  Some types of filters 
1.1  Definitions  

A collection  ℱ of subsets of a set X is called a filter on X if it satisfies 
the following axioms: 
(F1) If A⊂ X and A contains a set B ∈ ℱ, then A ∈ ℱ. 
(F2) The intersection of a finite collection of sets in  ℱ belongs to ℱ. 
(F3) The empty subset of X does not belong to ℱ. 
 First let us examine a few elementary consequences of this definition. 
It follows from (F1) that X is a member of any filter on X. 

Note that P(X) a collection of subsets of X is not a filter on X. 
However, it satisfies (F1) and (F2). Therefore it is sometimes called the 
improper filter on X. Conversely, if ℱ is a collection of subsets of X  
containing the empty set and satisfying (F1) and (F2), it follows from (F1) that 
ℱ = P(X), that is, ℱ is improper. 

Let X be a set and ⊂ P(X) a collection of subsets. Then  has the 
finite intersection property (FIP) if any finite intersection of sets in  is non-
empty.  (From the axioms (F2) and (F3) that a filter has  the FIP.)  

The cofinite filter on an infinite set X is the set of all subsets A of X 
such that the complement of A in X is  finite.  
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That is, ℱ = {A ⊆ X: X \ A is finite }. (or) 
 ℱ = {X \ A ∶ A ⊆ X  is finite }. 
This filter on X = ℕ, the set of natural numbers, is also called the 

Fréchet filteron ℕ. 
A maximal element of the set of all filters on X is called an ultrafilter 

on X.   
For any non-empty subset M of X, the set {A⊆X : M ⊆ A} is a filter 

on X, the principal filter generated  by M. 
For any a ∈ X the set { A⊆ X : a ∈ A } is the principal ultrafilter 

defined by a. 
Any ultrafilter that is not principal is called non-principal ultrafilter. 
A filter ℱ on X  isfree if the intersection of all sets in ℱ is empty.  

That is, ∩ ∈ℱ  A = ∅. 
Let X be a set and ⊂ P(X) a collection of subsets. The (im)proper 

filter generated by  is the set 
< >=∩( { ℱ ⊂ P(X) :  ℱ ⊃  and  ℱ is a(n) (im) proper filter on X}). 

So < > is the intersection of all (im) proper filters on X that contains 
set   . 
 
1.2  Example 

The set of all neighborhoods of a point x ∈ X is filter ℬ(x) called the 
neighborhood filter of x. 
 
2.Characterizations of the Ultrafilters 
2.1  Theorem (Ultrafilter lemma) 
 Let X be a set and suppose ⊂ P(X) has FIP. Then there is an 
ultrafilter  on X which contains all of . 
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Proof 
 Let the set  consisting of all proper filters on X containing , 
partially ordered by set inclusion. Then  is non-empty because < >∈ . 
Let  be a chain in . 
 We will prove ∪ ∈ . For (F3), since any element of  does not 
contain empty set, ∅ ∉∪ .For (F2), if A, B∈ ∪ , then there are  
C, D ∈  such that A∈ C and B∈ D. Since  is a chain, we have C ⊂  
without loss of generality. Consequently, A, B are elements of D and since D 
is a filter A∩ B ∈ D∈ ∪  . For (F1), it is a trivial matter to verify that ∪  is 
closed under supersets, so we have ∪ ∈  indeed. This union is an upper 
bound of  in . According to Zorn's lemma,  has  maximal elements. Let 

 be a maximal element of . If  ℱ ⊃  is a filter, then ⊂ ℱ.By the 
maximality of , ℱ ⊂  and we have = ℱ.So  is an ultrafilter and it 
contains all of . 
 
2.2   Lemma 
 Let A ,   A , …, A ∈ P(X) such that A ∪ A ∪… ∪ A ∈  
where  is an ultrafilter on X. Then  A ∈  for at least one i. In addition, if 
the sets are mutually disjoint, then A ∈  for exactly one i. 
Proof 
  Let  A ∪ A ∈ . Suppose (to the contrary) that neither A ∈  nor 
A ∈ . Consider ℳ = {Z ∈ P(X) :A ∪  Z ∈  }. 
 First we need to show that ℳ is a filter on X.For (F3), if ∅ is a 
member of  ℳ, then  A  = A ∪ ∅ ∈ , contradiction. So ∅ ∉ ℳ. 
 For (F2), if B  ,B ∈ ℳ, then  A ∪ B  ∈  and  A ∪ B  ∈ . 
Now (A ∪ B  ) ∩ ( A ∪ B  ) ∈  because   is a filter.That is,                
 A ∪ ( B ∩ B  ) ∈ .It follows thatB ∩ B  ∈ ℳ. 
 For (F1), let V∈ P(X), U ⊂ V and U ∈ ℳ. Then A ∪ U ∈ . 
Since U ⊂ V, A ∪  U ⊂ A ∪  V.Thus  A ∪  V ∈  because  is a filter. 
So V ∈ ℳ. 
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 Therefore  ℳ is a filter on X.Moreover, we have ⊆ ℳ. 
Also, ⊊ ℳbecause  ∈ ℳ\ , contradicting the maximality of .Our 
assumption is false, so  A ∈  for at least one i.Finally, if A ∩ A  =  ∅ and 
A , A  ∈  then this implies that ∅ ∈ , a contradiction.The generalization to 
n≥2 follows by induction. 
 
2.3   Theorem 
 Let ℱ be a filter on X. Then ℱ is an ultrafilter if and only if for every 
A ⊂ X either A ∈ ℱor X \ A ∈ ℱ. 
Proof 
 Suppose ℱ is an ultrafilter.Let A ∈ P(X).The previous lemma holds 
since A ∪ (X \ A) = X ∈ ℱ and A ∩( X \ A ) =  ∅. 
 Conversely, suppose (to the contrary)that  ℱ is not an ultrafilter. Then 
there exists a filter ℳ such that ℱ ⊊ ℳ and take A ∈ ℳ \ ℱ. 
 Thus A ∈ ℳ  and A∉ ℱ. So  X \ A ∈ ℱ by given condition. 
 Since ℱ ⊂ ℳ, then this implies that both A and X \ A are in ℳ. 
Hence A ∩( X \ A ) =  ∅ ∈ ℳ, contradicting the fact that ℳ is a filter. 
 
2.4   Remark 
 If  is an ultrafilter on X, and A∈ , then  contains all sets B with A 
⊂ B ⊂ X. Indeed, if we start with such a B, then by the above result, either  B 
∈  or X \ B ∈ .If X \ B ∈ , then A ∩ ( X \ B ) =  ∅ ∈ , contradiction. 
Therefore B must belong to . 
 
2.5   Corollary 
 The Fréchet filter ℱon an infinite setℕ is not an ultrafilter. 
Proof 
 Let  and   denote the sets of the even and odd numbers in ℕ 
respectively.We known that ∩ =  ∅ and ∪ = ℕ ∈ ℱ, but neither  
nor  belongs to ℱ because any set in ℱhas finite complement. 
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3. Types of Ultrafilters 
 There are two very different types of ultrafilters such as principal and 
non-principal (free). 
  
3.1  Proposition 
 Any ultrafilter over a finite set is principal. 
Proof 
 Let X be a finite set,  be an ultrafilter over P(X) and  

= {  ,  , … , }.Since ∅ ∉  and ∩ ∈  for every i, j,  
 ∩  ∩ … ∩ ≠ ∅. If a ∈∩  , then a ∈ .But by the definition of 

principal ultrafilter{ S : a ∈ S} ⊂ .By the maximality of ultrafilter,           
={S: a∈ S}. 

(or) 
 Let A be a finite set. Then either some a ∈ A satisfies {a} is  in the 
ultrafilter, in which case it is principal; or else X \ {a} is in the ultrafilter for 
all a∈ A, so the finite intersection  
 A ∩( ∩a∈A (X \ {a})= A ∩( X \  ∪a∈A {a} )= A ∩ (X \ A) = ∅ 
is also in the ultrafilter. 
 So a non-principal ultrafilter must contain only infinite sets. In 
particular, if X is finite, then every ultrafilter on X is principal. 
 
3.2   Proposition 
 Cofinite filter is intersection of all non-principal ultrafilters. 
Proof 
 Let X be an infinite set. 
 Suppose that a set A⊆ X; we want to show that A is cofinite. 
Suppose for contradiction that A is not cofinite. That is, the set D= X \ A is 
infinite. From Proposition 3.1, the infinite set D belongs to some non-principal 
ultrafilter  on X. But  is a non-principal ultrafilter on X which does not 
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contain A, contradicting our assumption that A belongs to every non-principal 
ultrafilter. 
 Let ℱ ={B⊆ X: X \ B is finite}, the cofinite filter on X. Then the 
collection {D} ∪ ℱ has the FIP, whence {D}  ∪ ℱ ⊂  for some ultrafilter . 
Since  contains  ℱ, it is non-principal. 
 
3.3   Corollary 
 A non-principal ultrafilter is free. 
Proof 
 If there exists x∈∩A∈ℱA, then X \ {x} is not an element of ℱ, by 
Theorem 2.3, {x} ∈ ℱand ℱ is  a principal ultrafilter. 
 
3.4   Proposition 
 Every non-principal ultrafilter on an infinite set X contains the cofinite 
filter on X. 
Proof 
 Let  be a non-principal ultrafilter on X  and  let x ∈ X be arbitrary. 
Since is an ultrafilter, exactly one of the sets {x} and X \ {x} belongs to , 
and since  is non-principal, {x}∉ . Thus, X\{x}∈  for each  
x ∈X. Now let F be any finite subset of X; then  
 X \ F = X \ ∪x∈F {x}=∩x∈ℱ (X \ {x})∈ . 
 That is, X \ F ∈ . We have {X \ F: F ⊆ X is finite} is the cofinite 
filter on X. 
 Therefore   contains the cofinite filter. 
 
3.5   Proposition 
 An ultrafilter on X is free if and only if it contains the Fréchet filter on 
X.  
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Proof 
 In the previous proposition we proved that every free ultrafilter on X 
contains the Fréchet filter on X.  For the converse, suppose that  is a fixed  
(principal) ultrafilter on X; then there is an x∈ X such that {x} ∈ . 

But X \ {x} is an element of the Fréchet filter that is not in  , so  
does not contain the Fre'chet filter.  
 
4. Ultrafilter Convergence Theorem 
4.1   Definition 
 A filter ℱ on a topological space Y converges to a point y ∈ Y or y is 
a limit of ℱ if for all open sets U containing y, U ∈ ℱ. 
 
4.2   Theorem 
 Let Y be a topological space. 
1. Y is Hausdorff if and only if every ultrafilter ℱ on Y converges to at most 

one point. 
2. Y is compact if and only if every ultrafilter ℱ on Y converges to at least 

one point. 
Proof 
1. Suppose (to the contrary) that Y is Hausdorff, but x ≠ y are limit 
points of ℱ.  
 Since Y is Hausdorff, there exist disjoint open sets x ∈ U and 
 y ∈V .By the definition of limit point, U, V ∈ ℱ but U ∩ V= ∅, 
contradiction. 
 Conversely, suppose that Y is not Hausdorff. Then there are points          
x ≠ y such that every open neighborhood of x intersects every open 
neighborhood of y. 
Then {U :  x ∈ U open} ∪ { V : y ∈ V open } has the FIP. Let ℱ be an 
ultrafilter containing it. So x and y are both limit points of ℱ. 
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2. Suppose to the contrary that Y is compact, but ℱ has no limit points. 
Then for all y ∈ Y, there is an open set U containing y such that  U ∉ ℱ. So 
Y =∪ ∈ U  and by compactness, Y=∪ U . But Y∈ ℱ, so some U ∈ ℱ, 
contradiction. 
 Conversely, suppose that Y is not compact. Then there is an open 
cover Y=∪ ∈ U with no finite subcover. So ∩ (Y \ U )  = ∅, but no finite 
intersection is empty. Then {( Y \ U ) } has the FIP, so we can take an 
ultrafilter ℱ containing it. Now for any point y ∈ Y, y is contained in some U , 
and U ∉ ℱ, since( Y \ U )  ∈  ℱ. So y is not a limit point of  ℱ. 
 
5.Comparison of filters on a set X 
5.1  Definition 
 Let ℱ1, ℱ2 be two filters defined on a set X. We say that ℱ1is finer 
than ℱ2(or that ℱ2is coarser than ℱ1) if ℱ2 ⊂ ℱ1. 
 
5.2  Proposition 
 Let (ℱi)i∈I be a family of filters on a set X. Then ℱ =∩i∈I ℱi is a filter  
on X and has the following properties. 
(a) ℱ is coarser than ℱi(i ∈ I). 
(b) If ℱ ′is a filter coarser than everyℱi(i ∈ I) thenℱ ′ ⊂  ℱ. 
Proof 
 For (F1), let A⊂X, B⊂A and B∈ ℱ. It follows that B ∈ ℱi for every i∈
I. 
 Since ℱi is a filter and B⊂A, A∈ ℱi for every i ∈ I. 
 Thus A ∈∩i∈I ℱi = ℱ. 
 For (F2), let A1 , A2 , … , An ∈ ℱ. For each j, Aj ∈∩i∈I ℱi and Aj ∈ ℱi 
for every i ∈ I.Since ℱi is a filter (i ∈ I), ∩ 1 j ∈  ℱi(i ∈ I).So ∩ 1 j ∈
∩i∈I ℱi = ℱ. 
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 For (F3), for each i, ℱi does not contain empty set, ∅ ∉∩i∈I ℱi. Therefore ℱ is a filter. Since ℱ = ∩i∈I ℱi, ℱ ⊂ ℱi(i ∈ I).That is, ℱ is coarser 
than ℱi(i ∈ I). 
(a) Let ℱ ′ be a filter coarser that ℱi(i ∈ I). That is, ℱ ′ ⊂ ℱi(i ∈ I). 
 Thus  ℱ ′ ⊂∩i∈I ℱi = ℱ. 
 
5.3  Definition 
 Let (ℱi)i∈I be a family of filters ℱidefined on set X. If there exists a 
filter ℱ on X such that  
(glb1)ℱ is coarser than every ℱi(i ∈ I). 
(glb2) If ℱ ′ is a filter on X such that ℱ ′is coarser than every ℱi(i ∈ I), then 
ℱ ′ ⊂ ℱ.Then ℱ is called the greatest lower bound of the family ( ℱi)i∈I. Proposition (5.2) implies the greatest lower bound of a family (ℱi)i∈I of filters 
ℱi on X always exists. 
 
5.4   Definition 
 Let (ℱi)i∈I be a family of filters ℱi on X. If there exists a filter ℱ on X 
such that  
(lub1) ℱ is finer than every ℱi(i ∈ I). 
(lub2) If ℱ ′ is a filter on X such that ℱ ′is finer than every ℱi, i ∈ I,  
 then  ℱis called the least upper bound of ( ℱi)i∈I. 
 
5.5   Proposition 
 Let (ℱi)i∈I be a family of filters on a set X. Then this family has a least 
upper bound in the set of all filters on X if and only if there exists a filter on X 
which is finer than every ℱi for i ∈ I. 
Proof (Necessary condition) 
 Assume that the least upper bound ℱ exists.(lub 1) implies ℱ is finer 
than every ℱi for i ∈ I. 
(Sufficient condition) 
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Assume that there exists a filter ℱon X which is finer than ℱi (i ∈ I).Let Φ be 
the set of all filters which are finer than ℱi (i ∈ I).Then ℱ ∈ Φ and so Φ is 
non-empty.Let ℱ be the greatest lower bound of Φ.We prove that ℱ is least 
upper bound of ℱi (i ∈ I). 
 Let ℱj ∈( ℱi)i∈I. Since ℱ is the greatest lower bound ofℱi (i ∈ I), ℱj ⊂
 ℱ . 
 That is, ℱ is finer than every ℱi (i ∈ I).Put g ∈ Φ. Then g is finer than 
every ℱi.Thusevery ℱi is coarser than g of Φ. Hence  ℱi ⊂ ℱ. 
 Let ℱ ′ be a filter on X such thatℱ ′ is finer than every ℱi (i ∈ I). 
 Then ℱ ′ ∈ Φ. Since ℱ be the greatest lower bound of Φ and ℱ ′ ∈ Φ, 
(glb1) implies ℱ ⊂ ℱ ′.Therefore ℱ is the least upper bound of ( ℱi)i∈I.  
6. Some Notions of Filter Basis and Trace of Filter 
6.1  Definition 
 A collection  of subsets of X is a filter basis if it satisfies the 
following two conditions: 
(FB1)  The intersection of two sets in  contains a set of . 
(FB2)  is non-empty and the empty subset of X does not belongs to . 
 
6.2  Definition 
 Let f: X⟶Y be a mapping from a set X into a set Y. Let  be a filter 
basis on Y.Define  f 1( )={ f 1( A): A ∈  }. 
 
6.3  Proposition 
 Let  be a filter basis on Y and f: X⟶Ybe a mapping. Then  f 1( ) is 
a filter basis on X if and only if  f 1(A) ≠ ∅ for every A ∈ . 
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Proof 
 Assume that  f 1( ) is a filter basis on X. (FB2) implies  f 1( ) is 
non-empty and empty subset of X does not belong to f 1( ). For each A ∈

, f 1( A) ∈  f 1( ).  
 So  f 1( A) ≠ ∅. 
 Conversely, assume that  f 1(A) ≠ ∅ for every A ∈ . Since  is a 
filter basis, ≠ ∅ and empty subset of Y does not belong to . If A ∈ , 
then A≠ ∅. 
 Moreover, f 1( A) ≠ ∅ for every A ∈ .Therefore the empty subset of 
X does not belong to  f 1( ). Take 1 , 2 ∈  f 1( ).Then there  
exist A1,A2 ∈  such that 1 =  f 1(A1 ) and 2 =  f 1(A2 ). If A1,A2 ∈ ,  
then there existsA3 ∈ such thatA3 ⊂ A1 ∩ A2. It follows that            
 f 1(A3 )⊂ f 1(A1 ∩ A2)=  f 1(A1 ) ∩  f 1(A2 ) = Z1 ∩ Z2.Therefore f 1( )is 
a filter basis on X, if  f 1(A) ≠ ∅ for every A∈ . 
 
6.4   Definition 
 Let A be a non-empty subset of a set X and ℱ a filter on X. Then the 
trace of ℱon A is defined and denoted by ℱA = {A∩B: B∈ ℱ}. 
 
6.5   Proposition 
 If  is a filter basis on X, then the trace A = {A∩B: B∈ } is a filter 
basis on A if and only ifA∩B≠ ∅ for every B∈ . 
Proof 
 Let f:A→X be the canonical injection of A into X defined by f(x) = x. 
 Let B ∈ . 

 f 1(B) = {x ∈ A:f(x)∈ } = {x ∈ A: x∈ } = A∩B. 
 f 1( ) = { f 1(B): B ∈ } = {A ∩ B: B∈ } = A . 
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 Proposition 6.3 implies f 1( ) is a filter basis if and only if                  
 f 1(B) ≠ ∅ for every  B ∈ . Therefore A is a filter basis if and only if A ∩
B ≠ ∅ for every B ∈ . 
 
7. Convergence of Cauchy Filter 
7.1  Definition 
 Let X be a topological space and  a filter basis on X. A point x of               
X is said to adhere to  if x adheres to every set A in . 
 
7.2  Definition 
 Let E be a topological vector space and A⊂E. A filter ℱon A is said to 
be a Cauchy filter if for every neighborhood of zero V, there exists a set                 
X ∈ ℱ such that X−X⊂V. 
 
7.3  Proposition 
 Suppose that ℱis a filter on a set A of a topological vector space E and 
thatℱ converges to a point x∈ E.Then ℱis a Cauchy filter on A. 
Proof 
 Assume that ℱ on A converges to x ∈ E. Let V be neighborhood of 
zero in E.Then there exists a balanced neighborhood U of zero such that 
U+ U ⊂ V. Since ℱconverges to x, ℬ(x) ⊂ ℱ. Thus x + U ∈ ℬ(x) ⊂ ℱ. Then 
there exists X ∈ ℱ such that X ⊂x + U. 
 Let z ∈ X−X. Then there exists y, w ∈ X such that z = y – w.Since y, 
w ∈ X and X ⊂ x + U, y – x and w – x ∈ U.Since U is balanced, w– x ∈ U 
implies  x– w ∈ U. 
 Thus (y – x) +(x– w) ∈ U + U ⊂ V. So z = y – w ∈V, for every z∈ 
X–X.Hence X–X ⊂ V.Therefore ℱ is a Cauchy filter. 
7.4   Proposition  
 If the point x adheres to the Cauchy filter ℱon a set A of topological 
vector space E, then ℱconverges to x. 
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Proof 
 Let ℱ be a Cauchy filter on A and x adheres to ℱ. 
 Take W ∈ ℬ(x), whereℬ(x) is the set of neighborhood of x. 
 Hence there exists a neighborhood V of zero such that x +V ⊂ W. 

Therefore there exists a neighborhood U of zero such that U+U ⊂V. 
Since ℱis Cauchy filter, there exists X ∈ ℱ such that X–X ⊂U. x∈ Xsince x 
adheres to X and x + U is a neighborhood of x and hence 
 (x+ U) ∩ X≠ ∅. 

Take y ∈ (x + U) ∩X .Then y ∈ x + U and y ∈ X. 
Let z ∈ X. Then z –y ∈ X–X ⊂U.So z ∈ y+ U ⊂ x + U +U⊂ x + V⊂ W. 
Hence X ⊂ W.Since X ∈  ℱ and X ⊂W, W∈ ℱ and ℬ(x) ⊂  ℱ. 
Therefore ℱ converges to x. 
 

Acknowledgements 
 I am very grateful to the Myanmar Academy of Arts and Science for allowing the 
presentation of this research paper. I would like to appreciate Dr Win Naing, Rector, Dr Sein 
Sein Aung and DrThetNaingOo, Pro-Rectors of Monywa University, for their suggestions. I 
am also very thankful to Dr Zaw Myint, Professor and Head, Department of Mathematics, 
Monywa University, for his valuable useful comments. 
  



34               J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 

References 
1. Clark, P., "Convergence", Department of Mathematics, University of Georgia, October 

18, 2016. 
2. Galvin, D., "Ultrafilters, with applications to analysis, social choice and combinatorics", 

Department of Mathematics, University of Notre Dame, September 3, 2009. 
3. Garcia, M., "Filters and Ultrafilters in Real Analysis", Department of Mathematics, 

California Polytechnic State University, Related articles, December 22, 2012.                 
4. Horvath, J., "Topological Vector Spaces and Distributions", Volume 1, Addison Wesley 

Publishing Company, London, 1966. 
5. Kruchman, A., "Note on Ultrafilters", Prepared for Berkeley Math Toolbox Seminar, 

November 7, 2012. 
6. Thein Myint, Dr., "Lecture Notes on Functional Analysis", Department of Mathematics, 

University of Mandalay, 2011. 
7. T. Neve., "Theorems on Ultrafilters", Leiden University Bachelor Project Related 

Articles, August 25, 2013. 
 
 


